alphapepttools.pp.scanpy_pycombat#
- alphapepttools.pp.scanpy_pycombat(adata, batch, layer=None, *, copy=False)#
Wrap scanpy’s pp.combat function with error checks and preprocessing suggestions.
Correct for the batch effect of a categorical covariate using an empirical Bayes framework as implemented in the pyComBat function of scanpy. The underlying function requires a complete data matrix without NaN values, which may require imputation prior to running batch correction.
- Parameters:
adata (
AnnData) – Annotated data matrix, where rows are cells and columns are features. The data matrix cannot contain NaN values.batch (
str) – Name of the batch feature in obs, the variation associated with this feature will be corrected. Missing values in this column will be replaced by one single “NA” batch.layer (
Optional[str] (default:None)) – Name of the layer to batch correct. If None (default), the attribute adata.X is used.copy (
bool(default:False)) – Whether to return a modified copy (True) of the anndata object. If False (default) modifies the object inplace
- Return type:
- Returns:
-adata (
AnnData) AnnData with batch correction applied to layer. Ifcopy=Falsemodifies the anndata object at layer inplace and returns None. Ifcopy=True, returns a modified copy.